This monograph is devoted to construction of novel theoretical approaches of m- eling non-homogeneous structural members as well as to development of new and economically ef?cient (simultaneously keeping the required high engineering ac- racy)computationalalgorithmsofnonlineardynamics(statics)ofstronglynonlinear behavior of either purely continuous mechanical objects (beams, plates, shells) or hybrid continuous/lumped interacting mechanical systems. In general, the results presented in this monograph cannot be found in the – isting literature even with the published papers of the authors and their coauthors. We take a challenging and originally developed approach based on the integrated mathematical-numerical treatment of various continuous and lumped/continuous mechanical structural members, putting emphasis on mathematical and physical modeling as well as on the carefully prepared and applied novel numerical – gorithms used to solve the derived nonlinear partial differential equations (PDEs) mainly via Bubnov-Galerkin type approaches. The presented material draws on the ?elds of bifurcation, chaos, control, and s- bility of the objects governed by strongly nonlinear PDEs and ordinary differential equations (ODEs),and may have a positive impact on interdisciplinary ? elds of n- linear mechanics, physics, and applied mathematics. We show, for the ?rst time in a book, the complexity and fascinating nonlinear behavior of continual mechanical objects, which cannot be found in widely reported bifurcational and chaotic dyn- ics of lumped mechanical systems, i. e. , those governed by nonlinear ODEs.
Reviews
There are no reviews yet.