TOC: PART I: FOUNDATIONS OF GEOMETRY: 1.) Die Mannigfaltigkeit der Direktiven fur die Gestaltung Geometrischer Axiomensysteme by Paul Bernays — 2.) What is Elementary Geometry? by Alfred Tarski — 3.) Some Metamathematical Problems Concerning Elementary Hyperbolic Geometry by Wanda Szmielew — 4.) Dimension in Elementary Euclidean Geometry by Dana Scott — 5.) Binary Relations as Primitive Notions in Elementary Geometry by Raphael M. Robinson — 6.) Remarks on Primitive Notions for Elementary Euclidean and Non-Euclidean Plane Geometry by H.L. Royden — 7.) Direct Introduction of Weierstrass Homogeneous Coordinates in the Hyperbolic Plane, on the Basis of the Endcalculus of Hilbert by Paul Szasz — 8.) Axiomatischer Aufbau der Ebenen Absoluten Geometrie by Friedrich Bachmann — 9.) New Metric Postulates for Elliptic n-Space by Leonard M. Blumenthal — 10.) Axioms for Geodesics and Their Implications by Herbert Busemann — 11.) Axioms for Intuitionistic Plane Affine Geometry by A. Heyting — 12.) Grundlagen der Geometrie Vom Standpunkte der Allgemeinen Topologie Aus by Karol Borsuk — 13.) Lattice-Theoretic Approach to Projective and Affine Geometry by Bjarni Jonsson — 14.) Conventionalism in Geometry by Adolf Grunbaum ————– PART II: FOUNDATIONS OF PHYSICS: 15.) How Much Rigor is Possible in Physics? by P.W. Bridgman — 16.) La Finitude en Mecanique Classique, Ses Axiomes et Leurs Implications by Alexandre Froda — 17.) The Foundations of Rigid Body Mechanics and the Derivation of its Laws from Those of Particle Mechanics by Ernest W. Adams — 18.) The Foundations of Classical Mechanics in the Light of Recent Advances in Continuum Mechanics by Walter Noll — 19.) Zur Axiomatisierung der Mechanik by Hans Hermes — 20.) Axioms for Relativistic Kinematics with or without Parity by Patrick Suppes — . . . .
Reviews
There are no reviews yet.